

EXCEED PROJECT presentation – M18 status

The information contained in this presentation reflects only the EXCEED consortium's view and the European Defence Agency is not responsible for any use that may be made of the information it contains.

This presentation does not contain confidential information

1111

1111

Public information Under Grant Agreement n° 831747 EXCEED – PADR-EDT-02-2018

trustEd and fleXible system-on-Chip for EuropEan Defence applications

- The EXCEED project aims at creating a European supply chain of reconfigurable, flexible and trustable programmable system-on-a-chip family targeting a number of ruggedized and secure defence applications
- EXCEED is a project supported by EDA/EC and is running under the <u>Preparatory Action</u> on <u>Defence Research</u>

 The EXCEED consortium encompasses a total of 19 participants from 6 EU countries and Norway.

- Technology providers
- OEMs

EXCEED data

- Certification companies
- The project, which has a duration of **54 months**, will receive an EU grant of roughly €12 million.
- Further information on partners available on the EXCEED project website: <u>www.exceed-padr.com</u>

EXCEED Objectives (1)

• A trusted European supply chain based on a European cost effective and reliable technology: the 28nm FDSOI

• The EXCEED project will propose technical solution to avoid constraints brought by non-EU countries domination in SoC/SiPs for Defence applications by designing a European FPGA based System on Chip family suited for European Defence requirements.

• To achieve this objective, the EXCEED project will:

- Define a comprehensive set of requirements and specifications for SoC/SiP devices and related supply chain that considers the military specificities about operating environment, content protection, compliance with EU and National classified information and the various mission profiles.
- Develop a first prototype and get it tested by OEMs (Original Equipment Manufacturers).
- Develop synergies and supply chains with other European critical sectors such as Space, Aeronautics and Industrial.
- Assess the gaps to be fulfilled to overcome the dependence on non-EU technology providers and propose a roadmap for the creation of a trusted European supply chain.

EXCEED Objectives (2)

• The EXCEED workplan structure will follow the steps below:

EXCEED impacts

- The project is targeting the following impacts
 - Ensure secure and autonomous availability of high performance and trustable (re)configurable SoC/SiPs to military end-users.
 - Contribute to strengthening the European microelectronics industry and help improve its global position through the implementation of innovative technologies along a new European manufacturing value chain.
 - Demonstrate the potential of EU-funded research in support of EU critical defence technologies, in particular in the domain of (re)configurable SoC/SiPs.

Main achievements after 18 months

Public presentation _July 2022

Consortium / EDA use only Under Grant Agreement n° 831747 EXCEED – PADR-EDT-02-2018

Achievements @M18

- Use cases requirements fully specified (from security and technical points of view)
- SoC architecture defined
- Lifecycle management needs specified (SoC in systems)
- Softwares toolchain defined, based on end-users' requirements
- Augmented toolchain roadmap delivered
- Design started
- Trusted SiP studies activities started

Targeted use cases

Tactical Systems and devices use cases

- Military Radios
- Electronics Devices for
 Dismounted Soldiers
- On-ground signal processor for real- time COMINT
- Unified real-time Homeland
 Tactical Situation
- EW digital receiver

Security use cases

- Encryption devices
- Secure PNT applications
- Secure communications among distributed sensors

Airborne embedded computing use cases

- Weapon control in missile systems
- Embedded applications of launcher avionics
- Seekers and sighting applications

EXCEED trusted/secure SoCs Key Features

- **<u>Programmable processing</u>:** dual core APU A53 (Linux OS support), Dual core RTP R52
- **Configurable processing:** field programmable capabilities e.g. LUT, DSP, DPRAM
- <u>Security</u>: secure boot, crypto accelerators, OTP key storage, TRN generator, Lifecycle management
- <u>Connectivity</u>: e.g., Legacy/high speed connectivity, programmable Direct/Complex I/O
- Others: red / black separation, Developed with FDSOI 28nm for low power, leading to a family of SoCs to support all Use Cases requested and identified requirements

64 bits + 8 bits ECC						
Processing System	Processing System Memory Controllers DDR3/4 SDRAM eMMC host (NAND) QSPI (NOR) Connectivity					
Trace Port	ARM CoreSight Debug & Trace			PCle (x2)		
Secure Unit Secure CPU Secure boot Crypto services Boot & Service QSPI NOR SpaceWire Spl slave Protection Unit	Platform Mgnt Unit 200 MHz+ ARM [®] Cortex TM -M23 ROM (64 kB) RAM (128 kB) System Reg GPIO UART	Application Processing Unit 1.0 - 1.4 GHz ARM [®] Cortex TM -A53 32kB L1 NEON TM MMU FPU GIC 1 MB L2 Cache	Real-Time Processing Unit Split & 600 MHz ARM® Cortex TM -R52 32kB L1 NEON TM MPU FPU GIC 128 kB TCM (x3)	GbEth (x2) SpaceWire (x2) SPI (x4) UART (x4) I2C (x4) GPIOs		
Bitstream Manager CoreLink™ NIC-400 Network Interconnect						
System SMU Watchdog Timers Error Manager VTSENS OMUX Mailbox OTP DMA (x2) Fabric Interface 2 MB ECC on-chip RAM						
FPGA Fabric		High Speed Connective HSSL Comple	ty General C	Connectivity		
19x24 Mult. Preadder 56 bits ALU	True Dual Port 48 kbits 36 kbits w/EDAC	12.5 Gbps SpaceFibre JESD2048 ESIstream SRIO	1.8V to 3.3V	1.8V to 3.3V		
				Programmable Logic		

Use cases vs SoC architecture

	Use Case	SoC Subsystems			
1	Secure Software Defined Radio				
2	IP Encryptors				
3	Use of Trusted, re-Configurable Soc/Sip in Secure PNT Applications				
4	Electronic Devices for Dismounted Soldier				
5	Secure Communication among Distributed Sensors				
6	On Ground, Signal Processor for Real-time Comms Intelligence				
7	Unified Real-rime Homeland Tactical Situation				
8	WEAPON CONTROL IN MISSILE SYSTEMS				
9	Evaluation of Flexibility, Real-time, Performance And Reliability for Embedded Applications of Launcher Avionics				
10	Seekers and Sighting Applications				
11	1 Signal Processing and de-Interleaving Algorithm Implementation in EW Digital Reception				
LEG	SECURE SUBSYSTEM GENERAL PURPOSE SUBSYSTEM REAL-TIME SUBSYSTEM	PROGRAMMABLE LOGIC SUBSYSTEM			
	SYSTEM FUNCTION EXTERNAL MEMORY CONTROLLERS SUBSYSTEM PLATFORM MANAGEMENT SUBSYSTEM	I I/O CONNECTIVITY SUBSYSTEM			

Consortium / EDA use only Under Grant Agreement n° 831747 EXCEED – PADR-EDT-02-2018

Follow us on LinkedIn and on our website

Project Coordinators:

Stella Tropea - stella.tropea@st.com, Gildas Prat - gildas.prat@st.com

Communication and Dissemination Manager

Fabienne Brutin - fabienne@benkei.fr

12

Public presentation _July 2022

